AWPA Standard P39 25F-P3-P39: Proposal to Reaffirm P39 without Revisions. Proponent(s): Kevin Archer Committee Meeting Action: Letter Ballot Results: **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1776 | AWPA P39 PD18R26 | Additional Comment: Reaffirm without Revisions | | | | | Attachment(s): P39 Reaffirmation 2025.pdf | | ### **AWPA Standard P41** 25F-P3-P41: Proposal to Reaffirm P41 without Revisions. **Proponent(s):** Bill Rohrer Committee Meeting Action: Letter Ballot Results: **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------|--|------------------------------| | 1770 | | Additional Comment: Reaffirm without Revisions
Attachment(s): TEB 2025 P41-14 Standard ReaffirmationProposalForm Rev
June 24 2025 .pdf, Preventol A8 II Technical Fungicide Label.pdf, Preventol A 8
II Technical Fungicide SDS.pdf, Tebuconazole AWPA reaffirmation June 2025
.pptx | | ### **AWPA Standard P60** 25F-P3-P60: Proposal to Withdraw P60 without Prejudice Proponent(s): Rick Bleskey **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|---------------|-------------------|-----------------------| | 1758 | AWPA P60 PD26 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard P22** 25F-P4-P22: Proposal to Reaffirm P22 without Revisions. Proponent(s): Min Chen **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------|--|-----------------------| | 1753 | | Additional Comment: Reaffirm without Revisions Attachment(s): P4_P22_ACZA_reaffirmation_proposal.pdf | | ### **AWPA Standard P23** 25F-P4-P23: Proposal to Reaffirm P23 without Revisions. Proponent(s): Min Chen **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|------------------------------| | 1754 | AWPA P23 PD14R26 | Additional Comment: Reaffirm without Revisions | | | | | Attachment(s): P4_P23_CCA_reaffirmation_proposal.pdf | | ### **AWPA Standard P25** 25F-P4-P25: Proposal to Reaffirm and Revise P25 Proponent(s): Emmanuel Laval, Mark Manning **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | Proposed Change | | | | | | | |------|---|-----------------------|--|-------------------------------|--|--|--|--| | 1750 | AWPA P25 PD20R26 | | Iditional Comment: Reaffirm without Revisions tachment(s): P25 Reaffirmation_2025.docx | | | | | | | | AWPA P25 PD20R26
SECTION STANDARD
FOR INORGANIC | Preservative Code SB2 | NKX Description of the Preservative Application Method/Use Pattern Acceptable Carriers/Dillients | | | | | | | | BORON (SBX) [Table
Data] | | | Waterborne preservative Water | | | | | | Preservative Inor
Name Boro | | | | | | |-----------------------------------|---|--|--|--|--| | | Preservative Composition & Physical Chem. Requirements | | | | | | Composition on a 100% Oxide Basis | Boron, as B ₂ O ₃ % 100% | | | | | | Purity Criteria –
Actives | The solid or treating solution shall be made up of sufficient water soluble compounds, each in excess of 98 percent purity on an anhydrous basis. | | | | | | Acceptable Active
Compounds | Sodium octaborate Sodium tetraborate Sodium pentaborate Boric Acid FR-1 | | | | | | | Treating Solution | | | | | | T | pH: None | | | | | | Limitations | Temperature: None, except as limited under Standard UCS T1 | | | | | | | Analytical Methods [Only major analytical methods are listed. Refer to the AWPA BOS for additionally applicable standards] | | | | | | oncentrate/Solution | s AWPA A21, A64, A40 | | | | | | Wood | AWPA A7, A21, A40, A65, A68 | | | | | | | Committee Recommendations | | | | | | | Committee P-4 recommended to the T-3 committee a retention of 0.17 pcf (2.7 kg/m³) for pre-treatment of crossties that are second treated with CR, CR-S, CR-PS, or CuN in accordance with AWPA Standard U1. Committee P-4 also recommended minimum retentions of 0.28 pcf (4.5 kg/m³) of B ₂ O ₃ for applications out of contact with the ground continuously protected from liquid water. Note: Retentions are suitable in areas with Formosan termite activity. | | | | | | Minimum
Retentions | Committee P-4 also recommended minimum retentions of 1.0 kg/m³ as DOT (equivalent to 0.67 kg/m³ as B ₂ O ₃ and 0.04 pcf B ₂ O ₃) no penetration requirement and using existing assay zones. This retention is for applications out of contact with the ground and continuously protected from liquid water (AWPA UC1 and UC2). This retention is for the treatment of framing that is otherwise untreated with the objective of providing protection against decay fungi, drywood termites and wood destroying beetles. This retention is not intended to provide protection against subterranean termites and is for use in homes that are otherwise protected from subterranean termites by building code required treatments such as soil termiticides. | | | | | | | Enforcement | | | | | | Historical | Adopted in 2008 (formerly AWPA Standard P5, No. 9) | | | | | | Reaffirmation | 2000, 2007, 2014, 2020 | | | | | | Amendments | s 1995, 2010, 2013, 2016, 2020 | | | | | ### **AWPA Standard P26** 25F-P4-P26: Proposal to Withdraw P26 without Prejudice Proponent(s): Andy Zahora **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|---------------|-------------------|-----------------------| | 1729 | AWPA P26 PD26 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard P27** 25F-P4-P27: Proposal to Withdraw P27 without Prejudice **Proponent(s):** Andy Zahora Committee Meeting Action: Letter Ballot Results: **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|---------------|-------------------|-----------------------| | 1730 | AWPA P27 PD26 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard P28** 25F-P4-P28: Proposal to Withdraw P28 without Prejudice **Proponent(s):** Andy Zahora **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | nittee Disposition | Proposed Change | Item | ▼ID | |--------------------|-------------------|---------------|------| | | Withdraw Standard | AWPA P28 PD26 | 1731 | | | ! | | | | | | | | ### **AWPA Standard P29** 25F-P4-P29: Proposal to Withdraw P29 without Prejudice Proponent(s): Andy Zahora **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|---------------|-------------------|-----------------------| | 1732 | AWPA P29 PD26 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard P34** 25F-P4-P34: Proposal to Reaffirm P34 with Revisions. **Proponent(s):** Jim Brient **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | | | | Proposed Ch | ange | | Committee
Disposition | | |--|---------------------------------------|--|--|---|---|---|---|--------------------------|--| | 1715 | AWPA P34 PD26 | | Additional Comment: Reaffirm without Revisions Attachment(s): P34 CuN-W 2025 reaffirmation data package P34-PD26 FINAL | | | | | | | | 1716 AWPA P34 PD26 SECTION STANDARD FOR COPPER NAPHTHENATE WATERBORNE (CUN W) [Table Data] | Preservative
Code | CuN-W | | Description
of the
Preservative | Application
Method/Use
Pattern | Acceptable
Carriers/Diluents | | | | | | Preservative
Naphtl
Name Waterl | | | Waterborne
preservative |
Vacuum-pressure
treatment/Non-
pressure
treatment
Field treatment of
cuts and holes per
AWPA Standard
M4 | Water | | | | | | | Preservative Composition & Physical Chem. Requirements | | | | | | | | | | | Compositi
100% Acti | | Copper
Copper | as Cu: | 5.0%
48.0% | | | | | | Purity Cri
Activ | | be <u>at lea</u>
acids oc
carboxy
mg KOI
than 180 | ast 50% naphthe
curring in petro
lic acids having
H/g, and the ble
on an oil-free | basis. | p of carboxylic
than 50% C ₈₊
not more than 389
d number of not less | | | | | | | | | The treating solution shall contain the reaction product of divalent copper with naphthenic acid meeting the requirements of the specification given above. | | | | | | | | | Essential Fo | rmulants | give aqu
weight o | ieous solutions of ethanolamine | e shall be dissolved
within the pH range
in treating solution
per naphthenate to | e listed below. The s shall be 0.67 ± 0.2 | | | | | | | | | Treating Sol | ution | | | | | | | Tolera | nces | Concent | trate Tolerances | on % metal and Ac | ctives Basis | | | | | Component Minimum Maximum Copper, as Cu: 4.5% 5.5% Copper Naphthenate: 37% 59% | |---|--| | Limitations | pH: 8–11 Temperature: None, except as limited under Standard UCS T1 | | [Only major analyt | Analytical Methods ical methods are listed. Refer to the AWPA BOS for additionally applicable standards] | | Concentrate/Solutio | Cu: AWPA Standard A9, A21, A88 ns Naphthenic Acid/Copper Naphthenate: AWPA Standard A13, A41 | | Wood | Cu: AWPA Standard A9, A21, A88
Copper Naphthenate: AWPA Standard A41 | | | Committee Recommendations | | Minimum
Retentions | Committee P-4 recommended the following minimum retentions: UC1 to UC3B as Cu—0.070 pcf (1.1 kg/m³), and UC4A as Cu—0.11 pcf (1.8 kg/m³). Note: Retentions are suitable for sawn products in areas with Formosan termite activity. | | | Enforcement | | Historical | Adopted in 2008 (formerly AWPA Standard P5 No. 21) | | Reaffirmation | 2014, 2020 | | Amendments | 2011, 2014, 2020 | | Attachment(s): P34 Ci
05June2025.pdf | N-W 2025 revision data package P34-PD26 FINAL | ### **AWPA Standard P45** 25F-P4-P45: Proposal to Reaffirm P45 without Revisions. Proponent(s): Min Chen **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------|---|-----------------------| | 1756 | | Additional Comment: Reaffirm without Revisions Attachment(s): P4_P45_PTI_reaffirmation_proposal.pdf | | ### **AWPA Standard P47** 25F-P4-P47: Proposal to Reaffirm P47 without Revisions. Proponent(s): Kevin Archer **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1772 | AWPA P47 PD20R26 | Additional Comment: Reaffirm without Revisions Attachment(s): P47 reaffirmation 2025.pdf | | ### **AWPA Standard P51** 25F-P4-P51: Proposal to Reaffirm P51 without Revisions. **Proponent(s):** Emmanuel Laval **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------|--|------------------------------| | 1751 | | Additional Comment: Reaffirm without Revisions
Attachment(s): P51 Reaffirmation_2025.docx | | ### **AWPA Standard A6** 25F-P5-A6: Proposal to Reaffirm A6 without Revisions. **Proponent(s):** Kim Merritt **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|-----------------|--|-----------------------| | 1755 | AWPA A6 PD20R26 | Additional Comment: Reaffirm without Revisions | | ### **AWPA Standard A26** 25F-P5-A26: Proposal to Reaffirm A26 without Revisions. **Proponent(s):** Min Chen **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1752 | AWPA A26 PD20R26 | Additional Comment: Reaffirm without Revisions | | | | | | | ### **AWPA Standard A28** 25F-P5-A28: Proposal to Reaffirm A28 without Revisions. Proponent(s): Min Chen Committee Meeting Action: Letter Ballot Results: E 41 G 14 E1 14 **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1712 | AWPA A28 PD14R26 | Additional Comment: Reaffirm without Revisions | | ### **AWPA Standard A33** 25F-P5-A33: Proposal to Withdraw A33 without Prejudice **Proponent(s):** Glenn Larkin Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|----------------|-------------------|-----------------------| | 1774 | AWPA A33 14R20 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard A34** 25F-P5-A34: Proposal to Withdraw A34 without Prejudice Proponent(s): Glenn Larkin Committee Meeting Action: Letter Ballot Results: **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|----------------|-------------------|------------------------------| | 1775 | AWPA A33 14R20 | Withdraw Standard | | | | | | | | | | | | ### **AWPA Standard A36** 25F-P5-A36: Proposal to Revise A36 Proponent(s): Nelson Wanggui **Committee Meeting Action: Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | Proposed Change | Committee
Disposition | |------|---|--|--------------------------| | | AWPA A36
PD20R26
SECTION 4.4 | 4.4 Sodium lauryl sulfate, 0.004 M solution: Reagents Cat #: CS115100-1A or equivalent, or prepared using following procedure: Weigh 1.16 g SLS, to the nearest 0.1 mg, and transfer to a 1L volumetric flask containing approximately 500 ml of deionized water. After solids have dissolved, add one drop of triethanolamine to flask, mix and dilute to volume with deionized water. After 60 days, fresh solution should be prepared. | | | -,-, | AWPA A36
PD20R26
SECTION 4.5 | 4.5 Hyamine 1622 (benzethonium chloride), 99.0+%, Millipore-Sigma-Aldrich Cat #: 53751 or equivalent (mw = 448.10). Reagent is hydroscopic, it must be dried and stored in a desiccator prior to use as a reference standard. | | | | AWPA A36
PD20R26
SECTION 4.6 | 4.6 Hyamine 1622, 0.004 M solution. Millipore-Sigma-Aldrich Cat #: 115480 or equivalent, or prepared using following procedure: Dry 2-3 g of Hyamine 1622 at 105°C to a constant weight. Weigh 1.792 g, to the nearest 0.1 mg, of dried material and transfer to a 1L volumetric flask containing approximately 500 ml of deionized water. After solids have dissolved, dilute to volume with deionized water. It is recommended that titrant equilibrate in buret unit for 24 hours prior to use. After 60 days, fresh solution should be prepared. | | | | AWPA A36
PD20R26
SECTION 4.12 | 4.12 Benzalkonium chloride (alkylbenzyldimethyl-ammonium chloride or ADBAC), Millipore-Sigma Cat #: B 6295. | | | | AWPA
A36
PD20R26
SECTION 11.1
[Table Data] | Vo = average volume (ml) of Hyamine 1622 required for SLS blank standardization titrations V = volume (ml) of Hyamine 1622 required for sample titration M = molarity (mol/L) of Hyamine 1622 solution Mw = molecular wt. (g/mol) of quat = 354 for ADBAC and 362 for DDAC and DDAC equivalents Wt = weight (g) of wood extracted E = Volume (ml) of extraction solution used to extract wood sample E = A liquot (ml) of extract titrated E = | | | | AWPA A36
PD20R26
SECTION 4.7 | 4.7 Ethanol, 91%, anhydrous, denatured, ACS/HPLC grade (Burdick & Jackson Cat. # AH090 or equiv.). Other grades of ethanol, such as Reagent alcohol, Millipore-Sigma Cat# 270741, may be acceptable. | | ### 25F-P5-A42 # **AWPA Technical Committee P-5 Fall 2025 Standardization Cycle** ### **AWPA Standard A42** 25F-P5-A42: Proposal to Revise A42 with edits that include addition of Precision Statement **Proponent(s):** Nelson Wanggui Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | Proposed Change | Committee
Disposition | |-----|---|--|--------------------------| | | AWPA
A42
PD14R
26
SECTI
ON
5.1.2
PARA
3 | • Column Temperature, 35°C Mobile phase, 10% Water/90% Methanol Analysis mode, Isocratic Flow rate, 1.0 mL/min Sample size, 10 μL | | | | | 6.3 FMC 35171, cis-permethrin Analytical Standard, available from the Agricultural Products Group, FMC Corp., Princeton, NJ 08543; or Millipore Sigma, Cat# AABH9A95ADD7, or equivalent. | | | | 26 | | | |------|---|---|--| | | SECTI | | | | | ON 6.3 | | | | 1726 | AWPA
A42
PD14R
26
SECTI | 6.4 FMC 30960, trans-permethrin Analytical Standard, available from the Agricultural Products Group, FMC Corp., Princeton, NJ 08543; or Millipore Sigma, Cat# AABH9A956CE3, or equivalent. | | | | ON 6.4 | | | | 1762 | AWPA
A42
PD14R
26 | 10. Precision Statement: | | | | SECTI | | | | | ON
10.0 | 10.1 The following statement and tables should be used to evaluate the acceptability of an analysis using this method. The precision data will be developed following the guidelines in ASTM E691-18 | | | | | 10.2 Repeatability: Duplicate determinations by the same analyst using the same equipment should not be suspect at the 95% confidence level if the averages of the duplicate do not differ from another by equal to or less than the limits shown in the following table. | | | | | 10.3 Reproducibility: Duplicate determination on the same sample by analysts in different laboratories should not be suspect at the 95% confidence level if they do not differ from one another by equal to or less than the limits shown in the following table. | | | | | Precision Table: | | | | | Analyst in Treating Solution 95% Confidence Limits | | | | | # cis-Permethrin (mg/g) trans-Permethrin (mg/g) Within Lab: Repeatability Between Labs: Reproducibility | | | | | Sample 1 0.75 0.75 | | | | | <u>Sample 2</u> 2.25 2.25 | | | | | The above precision statements will base on an interlaboratory study using 6 laboratories, 2 level materials and 3 test results over three different days. | | | 1763 | AWPA
A42
PD14R
26
SECTI
ON
10.0 | 110.0 References: | | | 1764 | A XX/D A | 110.1 FMC M-AL-J 505.1 | | |------|-------------|--|--| | 1764 | AWPA | 1 <u>1</u> 0.1 FMC Method 505.1 | | | | A42 | | | | | PD14R | | | | | 26 | | | | | SECTI | | | | | ON | | | | | 10.1 | | | | 1765 | AWPA | 110.2 XenoBiotic Laboratories, Inc., XBL Study No. 03163, RPT01067 | | | | A42 | | | | | PD14R | | | | | 26
SECTI | | | | | SECTI | | | | | ON
10.2 | | | | | | | | | 1766 | AWPA | 110.3 FMC Study No. 138API03P3 | | | | A42 | | | | | PD14R | | | | | 26 | | | | | SECTI | | | | | ON | | | | | 10.3 | | | | 1768 | AWPA | 110.4 PTI Method CHB-CHB-OP-MTH-111-P-9 | | | | A42 | | | | | PD14R | | | | | 26
SECTI | | | | | SECTI | | | | | ON | | | | | ON
10.4 | | | | 1769 | AWPA | 124.0 Notes: | | | | A42 | - | | | | PD14R | | | | | 26 | | | | | SECTI | | | | | ON | | | | | 11.0 | | | | | | | | ### **AWPA Standard A46** 25F-P5-A46: Proposal to Reaffirm A46 without Revisions. **Proponent(s):** Ryan Sturdivant **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1710 | AWPA A46 PD20R26 | Additional Comment: Reaffirm without Revisions | | ### **AWPA Standard A47** 25F-P5-A47: Proposal to Reaffirm A47 without Revisions. **Proponent(s):** Ryan Sturdivant **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|------------------|--|-----------------------| | 1711 | AWPA A47 PD20R26 | Additional Comment: Reaffirm without Revisions | | ### **AWPA Standard A76** 25F-P5-A76: Proposal to Withdraw A76 without Prejudice **Proponent(s):** Ryan Sturdivant **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|----------------|-------------------|-----------------------| | 1778 | AWPA A76 14R20 | Withdraw Standard | | | | | | | | 1 | | | | ### **AWPA Standard AXX** 25F-P5-AXX: Proposal to create new A Standard for: Standard Method for the Determination of DCOI based (EL2) in Preservative-Treated Wood Using Near-Infrared (NIR) Spectroscopy **Proponent(s):** Ryan Sturdivant **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee
Disposition | |------|--------------------|--|--------------------------| | 1777 | AWPA | Standard Method for the Determination of DCOI based (EL2) in Preservative-Treated Wood Using Near-Infrared (NIR) | | | | AXX-26 | Spectroscopy | | | | SECTION | | | | | Standard
Method | | | | | for the | 1. Scope | | | | Determina | This method outlines a procedure for the quantitative determination of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOI) in | | | | tion of | preservative-treated wood using Near-Infrared (NIR) spectroscopy. The method is applicable to quality control and compliance | | | | DCOI | testing of wood products treated with DCOI-based preservatives. | | | | based | | | | | (EL2) in | Near-Infrared (NIR) Spectroscopy is a vibrational spectroscopic technique that operates in the wavelength range of approximately | | | | e-Treated | | | | | Wood | 780 to 2500 nanometers. It is based on the absorption of light by molecular overtones and combination bands primarily associated | | | | Using | with C-H, O-H, and N-H bonds. These absorptions arise from transitions to higher vibrational energy levels, which are typically | | | | Near- | weaker and broader than those observed in mid-infrared spectroscopy. The overtone and combination bands in NIR spectra are | | | | Infrared | often complex and overlapping, necessitating the use of multivariate statistical methods such as Principal Component Analysis (PCA) | | | | (NIR) | and Partial Least Squares Regression (PLSR) for data interpretation. | | | | Specifosco | and I did Least oqual of hegicoston (i Long for auta interpretation) | | | | ру | | | | | | In wood chemistry, NIR spectroscopy is particularly valuable due to its ability to penetrate the wood matrix and provide information | | on organic constituents. It enables rapid, non-destructive analysis of treated wood, allowing for the quantification of preservative chemicals like DCOI without the need for solvent extraction or chromatographic separation. The technique is sensitive to changes in chemical composition, moisture content, and structural variations, making it a suitable tool for quality control and compliance testing in the wood preservation industry. #### 2. Significance and Use This method provides a rapid, non-destructive alternative to traditional chemical analysis. It is suitable for routine analysis where high throughput and minimal sample preparation are desired. The method relies on chemometric models developed from reference samples analyzed by a validated chemical method. #### 3. Interferences NIR models are material-based, meaning the material is treated as the matrix in which the constituent of interest is embedded. To ensure the model extracts the net signal from the analyte of interest, the matrix effect must be incorporated into the multivariate modeling process. This allows the model to be trained for accurate prediction of the analyte concentration levels. The key interferences are as follows: - 3.1 Unrepresented wood types - The model does not account for wood types outside its training dataset. Ensure all samples match the species included during model development. - 3.2 Moisture Content Variability - NIR signals are sensitive to moisture. Maintain consistent moisture levels by adhering to the drying procedure outlined in § 8.1.1. - 3.3 Particle Size Effects - Light scattering varies with particle size, directly impacting NIR measurements. Replicate the grinding protocol
used during model calibration (§ 8.1.2). #### 4. Safety and Environmental Follow all applicable safety guidelines for handling treated wood. Ensure proper ventilation when processing samples. 4.1 Instrument Safety and Handling Follow all instrument manufacturer instructions for safe operation and all safety guidelines for processing treated wood. While the Buchi handheld NIR analyzer is designed for ease of use and field deployment, as with most handheld devices, a risk of exposure to the source is present. Never look directly into the light source and avoid direct eye exposure. #### 5. Apparatus - 5.1 Sample Preparation Equipment. - 5.1.1 Wiley mill or equivalent comminuting equipment, capable of producing a product passing a U.S. Standard 30 mesh sieve. - 5.1.2 Sieves. U.S. Standard 30 mesh or equivalent. (30 mesh = 0.6 mm) (20 mesh = 0.85 mm) - 5.1.3 Oven. A forced air convection oven or equivalent capable of drying samples to 0% moisture content. Ovens shall be vented to allow evaporating moisture to escape. - 5.2 NIR spectrometer A suitable instrument is the Buchi ProxiScout Portable FT-NIR operating in a wavelength range: 1350 2550 nm or equivalent capable of chemometric analysis. (e.g Buchi Modeler® Proprietary Python pipeline using Partial Least Squares regression (PLSr) provided by the supplier - 5.2.1 Sample holder for dry and ground solid wood samples #### 6. Reagents No chemical reagents are required for NIR analysis. #### 7. Sample Processing: 7.1 Sample charges in accordance with the provisions of AWPA Standards T1 and either M2 for industrial products or M25 for residential products. Alternatively, this method may be used for bulk wood samples or larger ground wood samples. 7.2 Drying. Wood samples treated with EL2 shall be dried to achieve 0% moisture content. Drying times may vary depending on the oven, moisture content and number of samples to be dried at a time. Drying times should be established for each oven and its intended use. Recommended drying temperature for forced-air ovens with wood cores is 80°C ±2°C for 2 hours prior to grinding. 7.3 Grind the sample to pass a 30 mesh sieve, avoiding contamination. 7.4 Redry the sample for 30 minutes at 80°C ±2°C. Overall drying time should not exceed 3 hours. 7.5 Cool the samples in a dessicator or similar. Note: It is important to analyze the sample as rapidly as possible after drying. Moisture reintroduction during cooling and processing prior to analysis should be minimized. Sufficient errors are introduced when samples are run at moisture contents above 3-5%. 7.6 Mix or stir the ground sample well for maximum homogeneity. The sample container should be filled to ¾ of its capacity (approximately 1.5 g) according to the procedures outlined by the instrument manufacturer. Compression of the ground sample to form a pellet is not required but care must be taken to maintain a sufficient and uniform thickness in both standard and unknown test samples. Significant errors may be introduced when small sample volumes are analyzed. #### 8. Sample Analysis: - 8.1 Instrument Preparation: - 8.1.1 NIR Instrumentation should be assembled, installed, stabilized, standardized, and calibrated according to the manufacturer's instructions. - 8.1.2 The instrument temperature working range is from 0 to 50 degrees Celsius. - 8.1.3 An external white reference tile is provided to calibrate the instrument. It is a critical point to ensure proper performance. The reference tile should be kept clean and dry. If any sign of dirt or discoloration on the surface is noted, please contact the device supplier for replacement. - 8.2 Process: - 8.2.1 Calibrate the device using a 100% reflective tile. Check the white tile for any dirt or dust. Avoid cleaning it with any solvent. - 8.2.2 Fill the specialized sapphire petri-dish sample holder with the ground wood sample to ¾ of its capacity (approximately - 1.5g). Tap the sample holder on a clean hard surface to settle the sample in uniform layer. Place the weighted metal block on top of the sawdust. - 8.2.3 Place the petri dish containing the prepared wood sample in the NIR spectrometer. - 8.2.4 Collect the spectrum over the full NIR range (1350 2550 nm). - 8.2.5 The spectrum is compared against a preloaded calibration model to determine the DCOI concentration. - Model development - 9.1 Develop a calibration model using reference samples with known DCOI concentrations (official HPLC method). - 9.2 Collect NIR spectra of each reference sample under identical conditions. - 9.3 Apply multivariate regression (e.g., Partial Least Squares Regression) to correlate spectral data with DCOI content. - 9.4 Validate the model using independent test samples and report the coefficient of determination (R²), standard error of calibration (SEC), and bias. The calibration model for DCOI Buchi ProxiScout – Portable FT-NIR was developed using 291 samples with concentrations ranging from 0.15 to 0.47 kg/m³ (0.009- 0.029 pcf). The model achieved a determination coefficient (R²) of 0.85 and a SEC of 0.018 kg/m³. (0.011 pcf) The slope and intercept of the calibration line were 0.94 and 0.029, respectively, with no significant deviation from linearity (slope =1 and intercept = 0) at the 95% confidence level observed. #### 10. Calculations The DCOI concentration can be reported directly from the chemometric model in units of kg/m³, pcf or ppm, depending on the user's preferences. #### 11. Precision and Bias Precision and bias depend on the quality of the calibration model and the consistency of sample preparation. - 11.1. Bias - 11.1.1 The model for DCOI in EL2 was evaluated for systematic and proportional bias using a t-test on the residuals. For the calibration set, the bias was 0.0018 kg/m³ (0.0001 pcf) with a standard deviation of 0.025 kg/m³ (0.0015 pcf), and the 95% confidence interval included zero, indicating no significant bias. - 11.1.2 The calibration bias was validated with 21 independent samples to confirm the model's accuracy, with a bias of -0.0043 kg/m³ (-0.00026 pcf) and a standard deviation of 0.034 kg/m³ (0.0021 pcf). - 11.2 Precision - 11.2.1 The following statements and table(s) should be used to judge the acceptability of an analysis using the method and the conditions described below. - 11.2.2 Repeatability: The repeatability standard deviation from a single operator has been determined for 6 samples (mean retention of 0.32 kg/m3) run in duplicate which provided a standard deviation of 0.017 kg/m3, coefficient of variation (CV) of 5.24%, and repeatability (Sr) of 0.046 kg/m3. - 11.2.3 Reproducibility: The reproducibility of this test method has not been determined at this time because the method is not widely in use but reproducibility data are expected to be available on or before reaffirmation. | DCOI | Confidence Limits | | | |-----------------------|--------------------|----------------------|--| | Concentration (kg/m3) | Repeatability (Sr) | Reproducibility (SR) | | | | | | | | | | | | | | | | | ### **AWPA Standard E12** 25F-P6-E12: Proposal to Reaffirm E12 without Revisions. **Proponent(s):** Michael Sanders Committee Meeting Action: Letter Ballot Results: E 4: G :4 E: 14 **Executive Committee Final Action:** | ▲ID | Item | Proposed Change | Committee Disposition | |------|------|--|-----------------------| | 1728 | 1 | Additional Comment: Reaffirm without Revisions | | ### **AWPA Standard M27** 25F-P5-M27: Proposal to Reaffirm M27 without Revisions. **Proponent(s):** Miguel Gutierrez Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ ID Item | | Proposed Change | Committee Disposition | |------------------|------------------|--|-----------------------| | 1709 | AWPA M27 PD20R26 | Additional Comment: Reaffirm without Revisions | | | | | | | ### **AWPA Standard U1(1)** 25F-T1-U1(1): Proposal to Revise U1 Section 1 by adding a new Use Category **Proponent(s):** Sailesh Adhikari Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|--------------------------
--|-----------------------| | 1733 | SECTION 1
PD26 PARA 1 | The Use Category System (UCS) of the American Wood Protection Association (AWPA) designates what preservative systems and retentions have been determined to be effective in protecting wood products under specified exposure conditions. The strength of the UCS and its focus is that all wood uses can be placed into one of five major Use Categories that clearly describe the exposure conditions that specific wood products can be subjected to in service. The major Use Categories are further broken down into sub-categories to define the associated degree of biodegradation hazard and product service life expectations for specific products and exposure conditions. Naturally durable wood is also categorized but with limited use and qualifications. In addition to the sixfive Use Categories for biodeterioration, there is a seventhsixth and separate Use Category for fire retardant applications. The Use Category designations are described in detail in Section 2 below. The Use Category system is designed to help specifies products and end-use environments. The user of the AWPA Standard U1 should first become familiar with the major differences between the Use Categories and the expected service conditions as described in Section 2. This information is then used in conjunction with Section 3: Guide to Treated Wood End Uses to determine the specific commodity specification of the standard that lists the appropriate preservative requirements for that use. When purchasing under the Use Category System, material orders should include the specific commodity, Use Category designation, Standard U1 Commodity Specification, wood species, preservative and any special requirements such as pre- or post-treatment preparations (including conditioning and drying). Wherever practicable, material should be manufactured in its final form prior to treatment to eliminate the necessity for subsequent cutting or boring of the treated wood. Risk assessment documents and models (e.g., Best Management Practices) have been developed by the Western Wood | | ### **AWPA Standard U1 Section 3** 25F-T1-U1 Section 3: Proposal to Revise U1 Section 3 Table Data **Proponent(s):** Jim Anderson Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | | Proposed Change | | | | | Committee
Disposition | | |-----|---|----------------------------------|------------------------|------------------------------|-----------------|-----|---|--------------------------|--| | | AWPA U1
SECTION 3 PD26
SECTION
TABLE 3 1
GUIDE TO
COMMODITY
SPECIFICATION | CION 3 PD26
CION | Use | Exposure | Use
Category | Spe | mmodity
ecification
Special Reqs. | | | | | | Furniture | Indoor | Protected,
Insect Only | 1 | A | | | | | | S FOR TREATED
WOOD END
USES | | Outdoor | Above
Ground,
Exterior | 3В | A | | | | | | ARRANGED BY
USE [Table
Data]2 | | Outdoor | Ground
Contact | 4A | A | | | | | |]_ | Furring Strips | Indoor | Above
Ground,
Damp | 2 | A | | | | | | | | Outdoor | Above
Ground | 3В | A | | | | | | | Gazebo Material | Painted/Coated | Above
Ground,
Exterior | 3A | A | | | | | | | | Unpainted | Above
Ground,
Exterior | 3В | A | | | | | | | Glued Laminated and Mechanically | Above Ground, Interior | Protected,
Insect Only | 1 | F | | | | | | | Fastened Timber | Above Ground, Interior | Protected,
Damp | 2 | F | | | | | | Above Ground Structural (Painted/Unpainted) | Exterior | 3B | F | | |----------------------------------|---|--|-----------|---|-----| | | General Structural,
Highway
Structural Non-Critical | Ground
Contact or
Fresh Water,
Low Decay | 4A | F | | | | Important Structural,
Highway
Important Structural or
Saltwater
Splash | Ground
Contact or
Fresh Water,
High Decay | 4B | F | | | | Critical Structural or
Highway
Critical Structural | Ground
Contact or
Fresh Water,
Severe Decay | 4C | F | | | Handrails/Guardrai | lsHighway Construction | Above
Ground,
Exterior | 3B | A | 4.3 | | Joists | Above Ground, Interior | Insect Only | 1 | A | 4.1 | | | Above Ground, Interior | Above
Ground,
Damp | 2 | A | 4.1 | | | Building Construction ¹ | Above
Ground,
Exterior | 3B, 4A | A | | | | Building Construction
Joists and beams
extending
beyond the building
envelope | Ground
Contact/Fresh
Water
Above
Ground,
Exterior | 4A | A | | | Laminated Strand
Lumber (LSL) | Building Construction, Above Ground, Interior | Insect Only | 1 | Ī | | | | Building Construction, | <u>Damp</u> | 2 | Ī | | | | Above Ground, Interior Building Construction, Above Ground, Protected Exterior | Protected | <u>3A</u> | Ī | | | Laminated Veneer
Lumber (LVL) | See Composite Lumber | | | | | | Landscape Ties | General | Ground
Contact or
Fresh Water | 4A | A | | | Lattice | Painted/Unpainted | Above
Ground,
Exterior | 3В | A | | | Lumber/Timbers | Above Ground, Interior | Insect Only | 1 | A | 4.1 | | | Above Ground, Interior | Wood
Exposed to
Dampness | 2 | A | 4.1 | | | Above Ground, Exterior,
Coated/Painted | All
Applications | 3A | | | | | Above Ground, Exterior
Joists
and Beams ¹ | Above
Ground,
Exterior | 3B, 4A | A | | | | General, Including | Above | 3B | A | | |
 | | | | | | _ | |---|--|----|---|-----|--|---| | | Exterior,
Uncoated | | | | | | | Docks, freshwater, joists and beams ¹ | Above
Ground,
Exterior | | A | | | | | Food Harvest and Storage | Above
Ground,
Exterior | | A | | | | | Roof Decking, | Above
Ground,
Exterior | | A | 4.1 | | | | Flooring/Subflooring
Food Contact | Above
Ground, | | A | | | | | | Exterior | | | | | | | General, Including
Retaining
Walls, Edging, Agri-
/Mariculture,
Boats, Furniture, | Ground
Contact or
Fresh Water | 4A | A | | | | | Gazebos,
Compost/Plant/Mushroom
Boxes, Flumes | 1 | | | | | | | Fire Escapes, Exterior
Exposed | Above
Ground and
Ground
Contact | | A | | | | | Wet Industrial Processing
Areas | Above
Ground and
Ground
Contact | | A | | | | | Docks, freshwater, joists and beams ¹ | Above
Ground or
Fresh Water | | A | | | | | Cooling Towers | Fresh Water
Contact | | A | 4.4 | | | | Joists and beams extending beyond the building envelope | Above
Ground,
Exterior | | A | | | | | Brine Storage, Highway
Construction Materials | Ground
Contact or
Fresh Water | | В | 4.1 | | | | Playground Equipment | Ground
Contact or
Fresh Water | | В | 4.3 | | | ### 25F-T2/T3/T4/T8-U1(2) # AWPA Technical Committees T2/T3/T4/T8 Fall 2025 Standardization Cycle ### **AWPA Standard U1(2)** 25F-T2T3T4T8-U1(2): Proposal to Revise U1 Section 2 by adding a new Use Category - REVISED **Proponent(s):** Sailesh Adhikari Committee Meeting Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | Proposed Change | Committee Disposition | |------|-------------------------------------|---|--| | 1734 | AWPA U1
SECTION 2 PD26
PARA 1 | | Edits submitted by proponent on July 10. | | | I AKA I | Wood and wood-based materials used in
interior and/or exterior applications not in contact with the ground or foundation, and located in regions with a low natural potential for insect attack. These wood products are protected from decay only. | | | | | They are not intended for use in sawn components that are critical to the structure, difficult to replace, or likely to be exposed to ground-contact-type hazards due to climate, construction, or natural/artificial processes. | | | | | Examples include black locust, cypress, redwood, cedar, or thermally modified wood. When exposed to weather, there is a reasonable expectation of low natural potential for wood decay. | | | | UCD N. Wood a or found wood pi modifie preserve replace | ATURAL DURA and wood-based n lations for which roducts are protect ation. When expeted wood without- and critical to the | ABILITY materials used in ithere is no inseed to weather additional protect additional protect in ithere is no inseed to weather additional protect is structure or that | nterior and exterior tresistance, and no coungi through their or they are not form. They are not formay be exposed to part of the | conditions not in contact themicals added. Such we natural compounds to degradation but ar r sawn components the ground contact type haves of low natural poter | et with the ground
reaturally durable
or thermal
e not equivalent to
at are difficult to
zards due to climate. | |---|--|--|---|--|---|---| |
AWPA U1
SECTION 2 PD26
[Table Data] | | USE
CATEGORY UCD NATURALLY DURABLE | Interior & Exterior construction No Insects Above Ground Non-critical components | USE ENVIRONMENT Exposed to all weather cycles, but are not equivalent to preserved wood without additional protection | COMMON AGENTS OF DETERIORATION Decay fungi only | TYPICAL APPLICATIONS Interior and exterior construction, deck board, fence board, siding, garden box, sauma | | | | UC1
INTERIOR/
DRY | Interior
construction
Above Ground
Dry | Continuously
protected from
weather or other
sources of
moisture | Insects only | Interior
construction and
furnishings | | | | UC2
INTERIOR/
DAMP | Interior
construction
Above Ground
Damp | Protected from
weather, but may
be subject to
sources of
moisture | Decay fungi and insects | Interior
construction | | UC3A ABOVE GROUND Protected (Commodity Specification A only) | Exterior
construction
Above Ground
Coated &
rapid water
runoff | Exposed to all
weather cycles,
including
intermittent
wetting | Decay fungi and insects | Coated millwork, siding and trim | | |---|---|---|----------------------------|---|--| | UC3A ABOVE GROUND Protected (all other Commodity Specifications) | Exterior construction Above Ground Coated & rapid water runoff; Protected by design from liquid water | Exposed to all weather cycles, but either coated and installed in a manner that prevents prolonged wetting or fully protected from liquid water by building design & construction | Decay fungi and insects | Coated millwork,
siding and trim.
Exterior framing
& sheathing fully
protected from
exposure to liquid
water | | | UC3B ABOVE GROUND Exposed (Commodity Specification A only) | Exterior construction Above Ground Uncoated or poor water run-off Excludes above ground applications with ground contact type hazards (see Section 2 UC4 Note1) | Exposed to all
weather cycles
including
intermittent
wetting but with
sufficient air
circulation so
wood can readily
dry | Decay fungi and insects | Decking, railings,
joists and beams
for decks and
freshwater docks ¹ ,
fence pickets,
uncoated millwork | | | UC3B ABOVE GROUND Exposed (all other Commodity Specifications) | Exterior
construction
Above Ground
Uncoated or
poor water
run-off | Exposed to all
weather cycles
including
prolonged wetting | Decay fungi and insects | Uncoated
nonpressure
treated millwork | | | UC4A
GROUND
CONTACT
General Use
(Commodity
Specification
A
only) | Ground Contact or Fresh Water Non-critical components (Includes above ground applications with ground | Exposed to all
weather cycles,
including
continuous or
prolonged wetting | Decay fungi and
insects | Sawn fence, deck,
and guardrail
posts, cantilevered
members
extending beyond
the building
envelope, joists
and beams for | | | | contact
type hazards
or that are
critical or
hard to
replace) | | | decks and
freshwater docks ¹ | |---|--|--|--|---| | UC4A GROUND CONTACT General Use (all other Commodity Specifications | Ground
Contact or
Fresh Water
Non-critical
components | Exposed to all
weather cycles,
normal exposure
conditions | Decay fungi and insects | Round, half-
round, and
quarter-round
fence posts, round
deck posts, and
round guardrail
posts, crossties &
utility poles (low
decay areas) | | UC4B GROUND CONTACT Heavy Duty (Commodity Specification A only) | Ground Contact or Fresh Water Critical components or difficult replacement | Exposed to all
weather cycles,
including
continuous or
prolonged wetting,
high decay
potential includes
salt water splash | Decay fungi and
insects with
increased potential
for biodeterioration | Permanent wood
foundations, sawn
building structural
support posts and
poles, sawn
agricultural posts
and poles | | UC4B GROUND CONTACT Heavy Duty (all other Commodity Specifications | Ground Contact or Fresh Water Critical components or difficult replacement | Exposed to all
weather cycles,
high decay
potential includes
salt water splash | Decay fungi and
insects with
increased potential
for biodeterioration | Building poles,
round, half-round,
and quarter-round
agricultural posts,
crossties & utility
poles (high decay
areas) | ### **AWPA Technical Committee T-2** Fall 2025 Standardization Cycle ### AWPA Standard U1 Comm Spec A 25F-T2-U1 Comm Spec A: Proposal to Revise U1A Section 3 with Revisions to Table Data. **Proponent(s):** Craig McIntyre Committee Meeting
Action: **Letter Ballot Results:** **Executive Committee Final Action:** | ▲ID | Item | | Proposed Cl | nange | | | Committee
Disposition | |------|---|--|-----------------|---------------|----------------|--------------|--------------------------| | 1736 | AWPA U1
COMM SPEC A | | | Pine | s | | | | | PD26 SECTION | kg/m ³ | Southern | | | | | | | 3.0 <mark>[Table Data –</mark>
<mark>UC1]</mark> | (SI units) | Mixed Southern | Ponderosa | | | | | | | Preservative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | | $ACQ-A^{(b)}$ | 2.4 | 2.4 | 2.4 | 2.4 | | | | | ACQ-B ^(b) | 4.0 | 4.0 | # | # | | | | | ACQ-C ^(b) | 4.0 | 4.0 | # | 4.0 | | | | | ACQ-D ^(b) | 2.4 | 2.4 | 2.4 | 2.4 | | | | | ACZA ^(b) | 4.0 | 4.0 | # | 4.0 | | | | | CA-B ^(b) | 1.7 | 1.7 | 1.7 | # | | | | | CA-C(b) | 1.0 | 1.0 | 1.0 | # <u>1.0</u> | | | | | Cu8 | 0.32 | 0.32 | # | # | | | | | CuN-W ^(b) | 1.12 | 1.12 | 1.12 | 1.12 | | | | | EL2 ^(b) (+MCS at 3.2 kg/m ³ | 0.30 | 0.30 | # | # | | | | | $KDS^{(b)}$ | 3.0 | 3.0 | 3.0 | # | | | | | MCA ^(b) | 1.0 | 1.0 | 1.0 | # | | | | | MCA-C ^(b) | 0.8 | # | # | # | | | | | MCAP ^(b) | 1.0 | 1.0 | 1.0 | # | | | | | PTI ^(b) | 0.21 | 0.21 | # | # | | | | | Non-Formosar | 2.7 | 2.7 | # | 2.7 | | | | | Formosan ^(b) | 4.5 | 4.5 | # | 4.5 | | | | | >EU > E | " | | | | | |-----|-------------------------------------|--|-------------------------|----------------|-----------------------|----------------|-----------| | | | <5" ≥5 | 128 | 128 | 1 | # | 128 | | | | CR (as solution) CR-S (as solution) | 128 | 128 | | # | 128 | | | | | 128 | 128 | + | # | 128 | | | | CR-PS (as solution) | 128 | 128 | | # | 128 | | | | CuN (as Cu
metal) ^(b) | 0.64 | 0.64 | | # | # | | | | PCP-A | 6.4 | 6.4 | | # | 6.4 | | | | PCP-C | 6.4 | 6.4 | | # | 6.4 | | 737 | AWPA U1
COMM SPEC A | | | Pines | | | | | | PD26 SECTION 3.0 [Table Data – UC1] | pcf
(US Customary
units) | Southern Mixed Southern | Ponderosa | Scots
Pine-
Ger | | | | | | Preservative | Radiata, Patula | Red
Eastern | Scots
Pine- | Jack | | | | | | Caribbean | White | Swe | Lodgepole | | | | | ACQ-A ^(b) | 0.15 | 0.15 | 0.15 | 0.15 | | | | | ACQ-B ^(b) | 0.25 | 0.25 | # | # | | | | | ACQ-C ^(b) | 0.25 | 0.25 | # | 0.25 | | | | | ACQ-D ^(b) | 0.15 | 0.15 | 0.15 | 0.15 | | | | | ACZA ^(b) | 0.25 | 0.25 | # | 0.25 | | | | | CA-B ^(b) | 0.10 | 0.10 | 0.10 | # | | | | | CA-C ^(b) | 0.060 | 0.060 | 0.060 | # <u>0.060</u> | | | | | Cu8 | 0.020 | 0.020 | # | # | | | | | CuN-W ^(b) | 0.070 | 0.070 | 0.070 | 0.070 | | | | | EL2 ^(b)
(+MCS at 0.20 pcf) | 0.019 | 0.019 | # | # | | | | | $\mathbf{KDS^{(b)}}$ | 0.19 | 0.19 | 0.19 | # | | | | | MCA ^(b) | 0.060 | 0.060 | 0.060 | # | | | | | MCA-C ^(b) | 0.050 | # | # | # | | | | | MCAP ^(b) | 0.060 | 0.060 | 0.060 | # | 1 | | | | PTI ^(b) | 0.013 | 0.013 | # | # | 1 | | | | Non-Formosan | 0.17 | 0.17 | # | 0.17 | 1 | | | | SBX
Formosan ^(b) | 0.28 | 0.28 | # | 0.28 | 1 | | | | <5" ≥5" | <u> </u> | | | | | | | | CR (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | CR-S (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | CR-PS (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | CuN (as Cu
metal) ^(b) | 0.040 | 0.040 | # | # | | | | | PCP-A | 0.40 | 0.40 | # | 0.40 | | | | | РСР-С | 0.40 | 0.40 | # | 0.40 | | | 38 | AWPA U1 | | | D; | nes | | | | | COMM SPEC A
PD26 SECTION | kg/m ³ | Southern | rı | 1103 | | | | | 3.0 [Table Data UC2] | (SI units) | Mixed Southern | Ponderosa | 1 | | | | | | Preservative | Radiata, Patula | Red | Scots | Pine-Ger | Jack | | | | | Caribbean | Eastern Whi | ite Scots | Pine-Swe | Lodgepole | | | | ACQ-A ^(b) | 2.4 | 2.4 | | 2.4 | 2.4 | | | 1 | ACQ-B ^(b) | 4.0 | 4.0 | | # | # | | | | ACQ-C ^(b) | 4.0 | 4.0 | Ш | 4.0 | |----|-----------------------------------|--|--|--|--|--| | | | ACQ-C ^(b) | 4.0 | 4.0 | # | 4.0 | | | | ACZA ^(b) | 2.4
4.0 | 2.4
4.0 | 2.4 | 2.4 | | | | CA-B ^(b) | 1 | | | # | | | | CA-C ^(b) | 1.7 | 1.7 | 1.7 | #
#1.0 | | | | | | | | | | | | Cu8
CuN-W ^(b) | 0.32 | 0.32 | # 1.12 | # | | | | EL2 ^(b) | 1.12 | 1.12 | 1.12 | 1.12 | | | | (+MCS at 3.2 kg/m ³ | 0.30 | 0.30 | # | # | | | | $\mathbf{KDS^{(b)}}$ | 3.0 | 3.0 | 3.0 | # | | | | MCA ^(b) | 1.0 | 1.0 | 1.0 | # | | | | MCA-C ^(b) | 0.8 | # | # | # | | | | MCAP ^(b) | 1.0 | 1.0 | 1.0 | # | | | | PTI ^(b) | 0.21 | 0.21 | # | # | | | | Non-Formosar | n 2.7 | 2.7 | # | 2.7 | | | | SBX
Formosan ^(b) | 4.5 | 4.5 | # | 4.5 | | | | <5" ≥5 | 5" | | | | | | | CR (as solution) | 128 | 128 | # | 128 | | | | CR-S (as solution) | 128 | 128 | # | 128 | | | | CR-PS (as solution) | 128 | 128 | # | 128 | | | | CuN (as Cu
metal) ^(b) | 0.64 | 0.64 | # | # | | | | PCP-A | 6.4 | 6.4 | # | 6.4 | | | | РСР-С | 6.4 | 6.4 | # | 6.4 | | 39 | AWPA U1 | | Ī | D. | | | | | COMM SPEC A | | G . 1 | Pine | S | _ | | | PD26 SECTION 3.0 [Table Data UC2] | pcf
(US Customary
units) | Southern Mixed Southern | Ponderosa | | | | | <u> </u> | unito) | 1 | | a | | | | | Preservative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | ACQ-A ^(b) | 0.15 | 0.15 | 0.15 | 0.15 | | | | ACQ-B ^(b) | 0.25 | 0.25 | # | # | | | | ACQ-C ^(b) | 0.25 | 0.25 | # | 0.25 | | | | ACQ-D ^(b) | 0.15 | 0.15 | 0.15 | 0.15 | | | | | 0.15 | 0.13 | 0.15 | | | | | ACZA ^(b) | 0.15 | 0.25 | # | 0.25 | | | | | | | | | | | | ACZA ^(b) | 0.25 | 0.25 | # | 0.25 | | | | ACZA ^(b)
CA-B ^(b) | 0.25
0.10 | 0.25
0.10 | #
0.10 | 0.25
| | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) | 0.25
0.10
0.060 | 0.25
0.10
0.060 | #
0.10
0.060 | 0.25
#
#0.060 | | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 | 0.25
0.10
0.060
0.020 | 0.25
0.10
0.060
0.020 | #
0.10
0.060
| 0.25
#
#0.060
| | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 CuN-W ^(b) EL2 ^(b) | 0.25
0.10
0.060
0.020
0.070 | 0.25
0.10
0.060
0.020
0.070 | #
0.10
0.060
#
0.070 | 0.25
#
#0.060
#
0.070 | | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 CuN-W ^(b) EL2 ^(b) (+MCS at 0.20 pcf) | 0.25
0.10
0.060
0.020
0.070
0.019 | 0.25
0.10
0.060
0.020
0.070
0.019 | #
0.10
0.060
#
0.070 | 0.25
#
#0.060
#
0.070 | | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 CuN-W ^(b) EL2 ^(b) (+MCS at 0.20 pcf) KDS ^(b) | 0.25
0.10
0.060
0.020
0.070
0.019
0.19 | 0.25
0.10
0.060
0.020
0.070
0.019 | #
0.10
0.060
#
0.070
#
0.19 | 0.25
#
#0.060
#
0.070
| | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 CuN-W ^(b) EL2 ^(b) (+MCS at 0.20 pcf) KDS ^(b) MCA ^(b) | 0.25
0.10
0.060
0.020
0.070
0.019
0.19
0.060 | 0.25
0.10
0.060
0.020
0.070
0.019
0.19
0.060 | #
0.10
0.060
#
0.070
#
0.19
0.060 | 0.25
#
#0.060
#
0.070
#
| | | | ACZA ^(b) CA-B ^(b) CA-C ^(b) Cu8 CuN-W ^(b) EL2 ^(b) (+MCS at 0.20 pcf) KDS ^(b) MCA ^(b) | 0.25
0.10
0.060
0.020
0.070
0.019
0.19
0.060
0.050 | 0.25
0.10
0.060
0.020
0.070
0.019
0.19
0.060
|
0.10
0.060
#
0.070
#
0.19
0.060 | 0.25
#
#0.060
#
0.070
#
#
| I | | | | E (L) | 222 | 0.20 | ,, | 0.20 | |----|--|-----|--------------------------------|-------------------------|-----------|----------------|--------------| | | | L | Formosan ^(b) | 0.28 | 0.28 | # | 0.28 | | | | | <5" ≥5 | | 0.0 | μ. | 0.0 | | | | | (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | -S (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | -PS (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | N (as Cu
al) ^(b) | 0.040 | 0.040 | # | # | | | | PC | P-A | 0.40 | 0.40 | # | 0.40 | | | | PC | Р-С | 0.40 | 0.40 | # | 0.40 | | | AWPA U1 | | | | Pine | s | | | | COMM SPEC A PD26 SECTION 3.0 Table Data | | kg/m³
(SI units) | Southern | | | | | | UC3A] | | (Si units) | Mixed Southern | Ponderosa | | | | | | Pre | servative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | | Caribbean | | Scots Pine-Swe | C I | | | | | (as solution) | 128 | 128 | # | 128 | | | | CR | -S (as solution) | 128 | 128 | # | 128 | | | | CR | -PS (as solution) | 128 | 128 | # | 128 | | | | Cu | | 0.32 | 0.32 | # | # | | | | Cul | N (as Cu metal) ^(b) | 0.64 | 0.64 | # | # | | | | DC | OI-C | 2.1 | # | # | # | | | | PC | P-A | 6.4 | 6.4 | # | 6.4 | | | | PC | Р-С | 6.4 | 6.4 | # | 6.4 | | | | AC | Q-A ^(b) | 2.4 | 2.4 | 2.4 | 2.4 | | | | AC | Q-B ^(b) | 4.0 | 4.0 | # | # | | | | AC | Q-C ^(b) | 4.0 | 4.0 | # | 4.0 | | | | AC | Q-D ^(b) | 2.4 | 2.4 | 2.4 | 2.4 | | | | AC | ZA ^(b) | 4.0 | 4.0 | # | 4.0 | | | | CA | -B ^(b) | 1.7 | 1.7 | 1.7 | # | | | | CA | -C ^(b) | 1.0 | 1.0 | 1.0 | # <u>1.0</u> | | | | | N-W ^(b) | 1.12 | 1.12 | 1.12 | 1.12 | | | | EL | | 0.30 | 0.30 | # | # | | | | KD | | 3.0 | 3.0 | 3.0 | # | | | | | CA ^(b) | 1.0 | 1.0 | 1.0 | # | | | | | CA-C ^(b) | 0.8 | # | # | # | | | | | CAP ^(b) | 1.0 | 1.0 | 1.0 | # | | | | PT | | 0.21 | 0.21 | # | # | | 41 | AWPA U1 | | | V.21 | | | .,, | | | COMM SPEC A | | | | Pine | s | | | | PD26 SECTION
3.0 [Table Data
UC3A] | (| pcf
US Customary
units) | Southern Mixed Southern | Ponderosa | | | | | | | , | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | Pre | servative | Caribbean | | Scots
Pine-Swe | | | | | CB | (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | -S (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | -PS (as solution) | | | | | | | | | ` ′ | 8.0
0.020 | 8.0 | # | 8.0
| | | | Cu | D | 0.020 | 0.020 | # | # | | | | CuN (as Cu metal)(b) | 0.040 | 0.040 | # | # | |----|-----------------------------|--|---|---|--|---| | | | DCOI-C | 0.13 | # | # | # | | | | PCP-A | 0.40 | 0.40 | # | 0.40 | | | | PCP-C | 0.40 | 0.40 | # | 0.40 | | | | ACQ-A ^(b) | 0.15 | 0.15 | 0.15 | 0.15 | | | | ACQ-B ^(b) | 0.15 | 0.15 | # | # | | | | ACQ-C ^(b) | | | # | | | | | ACQ-C ^(b) | 0.25
0.15 | 0.25 | | 0.25 | | | | | | 0.15 | 0.15 | 0.15 | | | | ACZA ^(b) | 0.25 | 0.25 | # | 0.25 | | | | CA-B ^(b) CA-C ^(b) | 0.10 | 0.10 | 0.10 | # | | | | | 0.060 | 0.060 | 0.060 | # <u>0.060</u> | | | | CuN-W ^(b)
EL2 ^(b) | 0.070 | 0.070 | 0.070 | 0.070 | | | | (+MCS at 0.20 pcf) | 0.019 | 0.019 | # | # | | | | KDS ^(b) | 0.19 | 0.19 | 0.19 | # | | | | MCA ^(b) | 0.060 | 0.060 | 0.060 | # | | | | MCA-C ^(b) | 0.050 | # | # | # | | | | MCAP ^(b) | 0.060 | 0.060 | 0.060 | # | | | | PTI ^(b) | 0.013 | 0.013 | # | # | | 42 | AWPA U1 | | • | Pines | s | | | | COMM SPEC A
PD26 SECTION | kg/m ³ | Southern | | | | | | 3.0 [Table Data
UC3B] | (SI units) | Mixed Southern | Ponderosa | | | | | ОСЗБЈ | | Wixed Southern | Red | Scots Pine-Ger | | | | | Preservative | Radiata, Patula | Eastern | Scots Pine- | Jack | | | | | Caribbean | White | Swe | Lodgepole | | | | CR (as solution) | 128 | 128 | # | 128 | | | | CR-S (as solution) | 128 | 128 | # | 128 | | | | CR-PS (as solution) | 128 | 128 | # | 128 | | | | Cu8 | 0.32 | 0.32 | # | # | | | | CuN (as Cu
metal) ^(c) | 0.64 | 0.64 | # | # | | | | DCOI-A | 2.1 | # | # | # | | | | DCOI-C | 2.1 | # | # | # | | | | PCP-A | 6.4 | | | 6.4 | | | | | | 6.4 | # | | | | | РСР-С | 6.4 | 6.4 | # | 6.4 | | | | PCP-C
ACQ-A ^(c) | | | | 6.4
2.4 | | | | | 6.4 | 6.4 | # | | | | | ACQ-A ^(c) | 6.4
2.4 | 6.4
2.4 | #
2.4 | 2.4 | | | | ACQ-A ^(c)
ACQ-B ^(c) | 6.4
2.4
4.0 | 6.4
2.4
4.0 | #
2.4
| 2.4 | | | | ACQ-A ^(c)
ACQ-B ^(c)
ACQ-C ^(c) | 6.4
2.4
4.0
4.0 | 6.4
2.4
4.0
4.0 | #
2.4
#
| 2.4
#
4.0 | | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) | 6.4
2.4
4.0
4.0
2.4 | 6.4
2.4
4.0
4.0
2.4 | #
2.4
#
#
2.4 | 2.4
#
4.0
2.4 | | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) | 6.4
2.4
4.0
4.0
2.4
4.0 | 6.4
2.4
4.0
4.0
2.4
4.0 | #
2.4
#
2.4
| 2.4
#
4.0
2.4
4.0 | | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) ACZA ^(c) CA-B ^(c) | 6.4
2.4
4.0
4.0
2.4
4.0 | 6.4
2.4
4.0
4.0
2.4
4.0 | #
2.4
#
#
2.4
| 2.4
#
4.0
2.4
4.0
| | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) ACZA ^(c) CA-B ^(c) CA-C ^(c) | 6.4
2.4
4.0
4.0
2.4
4.0
1.7 | 6.4
2.4
4.0
4.0
2.4
4.0
1.7 | #
2.4
#
#
2.4
#
1.7 | 2.4
#
4.0
2.4
4.0
#
#1.0 | | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) ACZA ^(c) CA-B ^(c) CA-C ^(c) CCA(c) CUN-W ^(c) EL2 ^(c) (+MCS at 3.2 | 6.4
2.4
4.0
4.0
2.4
4.0
1.7
1.0
4.0 | 6.4
2.4
4.0
4.0
2.4
4.0
1.7
1.0 | #
2.4
#
2.4
#
1.7
1.0 | 2.4
#
4.0
2.4
4.0
#
#1.0
4.0 | | | | ACQ-A ^(c) ACQ-B ^(c) ACQ-C ^(c) ACQ-D ^(c) ACZA ^(c) CA-B ^(c) CA-C ^(c) CCA-C ^(c) CUN-W ^(c) EL2 ^(c) | 6.4
2.4
4.0
4.0
2.4
4.0
1.7
1.0
4.0 | 6.4
2.4
4.0
4.0
2.4
4.0
1.7
1.0
4.0 | #
2.4
#
2.4
#
1.7
1.0
| 2.4
#
4.0
2.4
4.0
#
#1.0
4.0 | | | | | | | | | | | |------|-----------------------------|--|-----------------|---------------|----------------|----------------|--|--| | | | MCA-C ^(c) | 1.0 | # | # | # | | | | | | MCAP ^(c) | 1.3 | 1.3 | 1.3 | # | | | | | | PTI ^(c) | 0.29 | 0.29 | # | # | | | | 1743 | AWPA U1 | | Pines | | | | | | | | COMM SPEC A
PD26 SECTION | pcf | Southern | | | | | | | | 3.0 Table Data | (US Customary
units) | Mixed Southern | Dan Janear | | | | | | | UC3B] | units) | Mixed Southern | Ponderosa | Scots Pine-Ger | | | | | | | Preservative | Radiata, Patula | Red | Scots Pine- | Jack | | | | | | | Caribbean | Eastern White | Swe | Lodgepole | | | | | | CR (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | | CR-S (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | | CR-PS (as solution) | 8.0 | 8.0 | # | 8.0 | | | | | | Cu8 | 0.020 | 0.020 | # | # | | | | | | CuN (as Cu metal)(c) | 0.040 | 0.040 | # | # | | | | | | DCOI-A | 0.13 | # | # | # | | | | | | DCOI-C | 0.13 | # | # | # | | | | | | PCP-A | 0.40 | 0.40 | # | 0.40 | | | | | | РСР-С | 0.40 | 0.40 | # | 0.40 | | | | | | ACQ-A ^(c) | 0.15 | 0.15 | 0.15 | 0.15 | | | | | | ACQ-B ^(c) | 0.25 | 0.25 | # | # | | | | | | ACQ-C ^(c) | 0.25 | 0.25 | # | 0.25 | | | | | | ACQ-D ^(c) | 0.15 | 0.15 | 0.15 | 0.15 | | | | | | ACZA ^(c) | 0.25 | 0.25 | # | 0.25 | | | | | | CA-B ^(c) | 0.10 | 0.10 | 0.10 | # | | | | | | CA-C ^(c) | 0.060 | 0.060 | 0.060 | # <u>0.060</u> | | | | | | CCA ^(c) | 0.25 | 0.25 | # | 0.25 | | | | | | CuN-W(c) | 0.070 | 0.070 | 0.070 | 0.070 | | | | | | EL2 ^(c)
(+MCS at 0.20 pcf) | 0.019 | 0.019 | # | # | | | | | | KDS ^(c) | 0.19 | 0.19 | 0.19 | # | | | | | | MCA ^(c) | 0.060 | 0.060 | 0.060 | # | | | | | | MCA-C ^(c) | 0.060 | # | # | # | | | | | | MCAP ^(c) | 0.080 | 0.080 | 0.080 | # | | | | | | PTI ^(c) | 0.018 | 0.018 | # | # | | | | 744 | AWPA U1 | | | Pine | s | | | | | | COMM SPEC A
PD26 SECTION | kg/m ³ | Southern | Tine | * | | | | | | 3.0 [Table Data
UC4A] | (SI units) | Mixed Southern | Ponderosa | | | | | | | | Preservative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | | | CR (as solution) | 160 | 160 | # | 160 | | | | | | CR-S (as solution) | 160 | 160 | # | 160 | | | | | | CR-PS (as solution) | 160 | 160 | # | 160 | | | | | | CuN (as Cu metal)(c) | 0.96 | 0.96 | # | # | | | | | | DCOI-A | 2.4 | # | # | # | | | | | | DCOI-C | 2.4 | # | # | # | | | | | | PCP-A | 8.0 | 8.0 | # | 6.4 | | | | | | РСР-С | 8.0 | 8.0 | # | 6.4 | | | | | | - 52 5 | 2.0 | 0 | | <u> </u> | | | | | | ACQ-A ^(c) | 6.4 | 6.4 | 6.4 | 6.4 | |----|---------------------------------------|---------------------------------------|-----------------|---------------|----------------|---------------| | | | | | | | | | | | ACQ-B ^(c) | 6.4 | 6.4 | # | # | | | | ACQ-C ^(c) | 6.4 | 6.4 | # | 6.4 | | | | ACQ-D ^(c) | 6.4 | 6.4 | 6.4 | 6.4 | | | | ACZA ^(c) | 6.4 | 6.4 | # | 6.4 | | | | CA-B ^(c) | 3.3 | 3.3 | 3.3 | # | | | | CA-C ^(c) | 2.4 | 2.4 | 2.4 | # <u>2.4</u> | | | | CCA ^(c) | 6.4 | 6.4 | # | 6.4 | | | | CuN-W ^(c) | 1.76 | 1.76 | 1.76 | 1.76 | | | | KDS ^(c) | 7.5 | # | # | # | | | | MCA ^(c) | 2.4 | 2.4 | 2.4 | # | | | | MCA-C ^(c) | 2.4 | # | # | # | | | | MCAP ^(c) | 2.4 | 2.4 | 2.4 | # | | 5 | AWPA U1
COMM SPEC A | | | Pine | s | | | | PD26 SECTION | pcf | Southern | | | | | | 3.0 <mark>[Table Data</mark>
UC4A] | (US Customary units) | Mixed Southern | Ponderosa | | | | ļ. | | Preservative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | CR (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CR-S (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CR-PS (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CuN (as Cu metal)(c) | 0.060 | 0.060 | # | # | | | | DCOI-A | 0.15 | # | # | # | | | | DCOI-C | 0.15 | # | # | # | | | | PCP-A | 0.50 | 0.50 | # | 0.40 | | | | PCP-C | 0.50 | 0.50 | # | 0.40 | | | | ACQ-A ^(c) | 0.40 | 0.40 | 0.40 | 0.40 | | | | ACQ-B ^(c) | 0.40 | 0.40 | # | # | | | | $ACQ-C^{(c)}$ | 0.40 | 0.40 | # | 0.40 | | | | ACQ-D ^(c) | 0.40 | 0.40 | 0.40 | 0.40 | | | | ACZA ^(c) | 0.40 | 0.40 | # | 0.40 | | | | CA-B ^(c) | 0.21 | 0.21 | 0.21 | # | | | | CA-C ^(c) | 0.15 | 0.15 | 0.15 | # <u>0.15</u> | | | | CCA ^(c) | 0.40 | 0.40 | # | 0.40 | | | | CuN-W(c) | 0.11 | 0.11 | 0.11 | 0.11 | | | | KDS ^(c) | 0.47 | # | # | # | | | | MCA ^(c) | 0.15 | 0.15 | 0.15 | # | | | | MCA-C ^(c) | 0.15 | # | # | # | | | | MCAP ^(c) | 0.15 | 0.15 | 0.15 | # | | | AWPA U1 | | | Pine | · · | | | | COMM SPEC A
PD26 SECTION | kg/m³ | Southern | rine | .s | | | | 3.0 [Table Data
UC4B] | (SI units) | Mixed Southern | Ponderosa | | | | | | Preservative | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | CR (as solution) | 160 | 160 | # | 160 | | | | · · · · · · · · · · · · · · · · · · · | | 160 | # | 160 | l l | | | CR-PS (as solution) | 160 | 160 | # | 160 | |---|---------------------------------------|----------------------------------|-----------------|---------------|----------------|---------------| | | | CuN (as Cu metal) ^(b) | 1.2 | 1.2 | # | # | | | | DCOI-A | 2.7 | # | # | # | | | | DCOI-C | 2.7 | # | # | # | | | | PCP-A | 8.0 | 8.0 | # | 8.0 | | | | РСР-С | 8.0 | 8.0 | # | 8.0 | | | | ACQ-B ^(b) | 9.6 | 9.6 | # | # | | | | ACQ-C ^(b) | 9.6 | 9.6 | 9.6 | 9.6 | | | | ACQ-D ^(b) | 9.6 | 9.6 | 9.6 | 9.6 | | | | ACZA ^(b) | 9.6 | 9.6 | # | 9.6 | | | | CA-B ^(b) | 5.0 | 5.0 | 5.0 | 5.0 | | | | CA-C ^(b) | 5.0 | 5.0 | 5.0 | #5.0 | | | | CCA ^(b) | 9.6 | 9.6 | # | 9.6 | | | | MCA ^(b) | 3.7 | 3.7 | 3.7 | # | | | | MCA-C(b) | 5.0 | # | # | # | | | | MCAP ^(b) | 3.7 | 3.7 | 3.7 | # | | 4 | AW/DA III | MCH | 3.7 | 5.1 | ٥.١ | | | | AWPA
U1
COMM SPEC A | | | Pine | es | | | | PD26 SECTION | pcf (US Customery) | Southern | | | | | | 3.0 <mark>[Table Data</mark>
UC4B] | (US Customary units) | Mixed Southern | Ponderosa | | | | | <u></u> | , | Radiata, Patula | Red | Scots Pine-Ger | Jack | | | | Preservative | Radiata, Patula | | | | | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | | CR (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CR-S (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CR-PS (as solution) | 10.0 | 10.0 | # | 10.0 | | | | CuN (as Cu metal) ^(b) | 0.075 | 0.075 | # | # | | | | DCOI-A | 0.17 | # | # | # | | | | DCOI-C | 0.17 | # | # | # | | | | PCP-A | 0.50 | 0.50 | # | 0.50 | | | | РСР-С | 0.50 | 0.50 | # | 0.50 | | | | $ACQ-B^{(b)}$ | 0.60 | 0.60 | # | # | | | | ACQ-C ^(b) | 0.60 | 0.60 | 0.60 | 0.60 | | | | ACQ-D ^(b) | 0.60 | 0.60 | 0.60 | 0.60 | | | | ACZA ^(b) | 0.60 | 0.60 | # | 0.60 | | | | CA-B ^(b) | 0.31 | 0.31 | 0.31 | 0.31 | | | | CA-C ^(b) | 0.31 | 0.31 | 0.31 | # <u>0.31</u> | | | | CCA ^(b) | 0.60 | 0.60 | # | 0.60 | | | | MCA ^(b) | 0.23 | 0.23 | 0.23 | # | | | | MCA-C ^(b) | 0.31 | # | # | # | | | | MCAP ^(b) | 0.23 | 0.23 | 0.23 | # | | _ | AWPA U1 | | I | Pine | | | | | COMM SPEC A | kg/m ³ | South | Pine | is i | ſ | | | PD26 SECTION 3.0 [Table Data | (SI units) | Southern | | | | | | UC4C] | | Mixed Southern | Ponderosa | | | | | | Preservative | Radiata | Red | Scots Pine-Ger | Jack | | | | i i esci vative | | | | | | | | | Caribbean | | Scots Pine-Swe | | | | | CR (as solution) | 192 | 192 | # | 192
192 | | | | CR-S (as solution) | 192 | 192 | | | | ı | | | | | | |-----------------------------|----------------------------------|----------------|---------------|----------------|---------------| | | CR-PS (as solution) | 192 | 192 | # | 192 | | | CuN (as Cu metal) ^(b) | 1.2 | 1.2 | # | # | | | DCOI-A | 2.7 | # | # | # | | | DCOI-C | 2.7 | # | # | # | | | PCP-A | 8.0 | 8.0 | # | 8.0 | | | PCP-C | 8.0 | 8.0 | # | 8.0 | | | ACQ-B ^(b) | 9.6 | # | # | # | | | ACQ-C ^(b) | # | 9.6 | # | 9.6 | | | ACQ-D ^(b) | 9.6 | 9.6 | 9.6 | 9.6 | | | ACZA ^(b) | 9.6 | 9.6 | # | 9.6 | | | CA-B ^(b) | 5.0 | 5.0 | 5.0 | # | | | CA-C ^(b) | 5.0 | 5.0 | 5.0 | # <u>5.0</u> | | | CCA ^(b) | 9.6 | 9.6 | # | 9.6 | | | MCA ^(b) | 5.0 | 5.0 | 5.0 | # | | | MCA-C ^(b) | 5.0 | # | # | # | | | MCAP ^(b) | 5.0 | 5.0 | 5.0 | # | | AWPA U1 | | | Pine | s | | | COMM SPEC A
PD26 SECTION | pcf | Southern | Tille | | | | 3.0 [Table Data
UC4C] | (US Customary
units) | Mixed Southern | Ponderosa | | | | | Preservative | Radiata | Red | Scots Pine-Ger | Jack | | | | Caribbean | Eastern White | Scots Pine-Swe | Lodgepole | | | CR (as solution) | 12.0 | 12.0 | # | 12.0 | | | CR-S (as solution) | 12.0 | 12.0 | # | 12.0 | | | CR-PS (as solution) | 12.0 | 12.0 | # | 12.0 | | | CuN (as Cu metal) ^(b) | 0.075 | 0.075 | # | # | | | DCOI-A | 0.17 | # | # | # | | | DCOI-C | 0.17 | # | # | # | | | PCP-A | 0.50 | 0.50 | # | 0.50 | | | РСР-С | 0.50 | 0.50 | # | 0.50 | | | ACQ-B ^(b) | 0.60 | # | # | # | | | ACQ-C ^(b) | # | 0.60 | # | 0.60 | | | ACQ-D ^(b) | 0.60 | 0.60 | 0.60 | 0.60 | | | ACZA ^(b) | 0.60 | 0.60 | # | 0.60 | | | CA-B ^(b) | 0.31 | 0.31 | 0.31 | # | | | CA-C ^(b) | 0.31 | 0.31 | 0.31 | # <u>0.31</u> | | | CCA ^(b) | 0.60 | 0.60 | # | 0.60 | | | MCA ^(b) | 0.31 | 0.31 | 0.31 | # | | | MCA-C ^(b) | 0.31 | # | # | # | | | MCAP ^(b) | 0.31 | 0.31 | 0.31 | # | ## **AWPA Technical Committee T-7** Fall 2025 Standardization Cycle #### AWPA Standard M4 25F-T7-M4: Proposal to Revise M4 Section 6.2 **Proponent(s):** Paula Oren **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Item | Proposed Change | Committee Disposition | |------|-----------------------------|---|--| | 1757 | AWPA M4 PD26
SECTION 5.3 | products is not required within this Standard. | [Not Accepted] Reason: Withdrawn by proponent. | | 1761 | SECTION 6.2 | 6.2 Copper naphthenate. Copper naphthenate preservatives containing a minimum of 2.0% copper metal are recommended for material originally treated with any currently approved oilborne preservatives copper naphthenate, pentachlorophenol, creosote, creosote solution or waterborne preservatives. Use of copper naphthenate preservatives with a minimum of 1.0% copper metal is appropriate in those regions of the country where the higher concentration material is not readily available. | | # **AWPA Technical Committee T-7** Fall 2025 Standardization Cycle #### **AWPA Standard M25** 25F-T7-M25: Proposals to Revise M25 Proponent(s): Donnie Parker, Kim Merritt **Committee Meeting Action:** **Letter Ballot Results:** **Executive Committee Final Action:** | ▼ID | Proposed Change | Committee Disposition | |------|---|------------------------------| | 1727 | 6.3.1.4 Sapwood species – Additional cores. For sapwood species (see 6.4.1.1) cores with heartwood present in the assay zone shall be replaced with additional core(s) for retention determination. However, all original cores including those with heartwood in the assay zone must be evaluated for penetration and if non-conforming shall be counted as a penetration failure even though they will not be used for retention determination (see 6.4.1.5). | | | 1759 | 3.1 Purchasing. Products shall be purchased that are suitable for the intended end use. They shall bear the grade mark of an accredited agency. Agencies shall be accredited by ALSC or accredited as an ISO Standard 17020 Inspection Body by IAS or other suitable organization. The accredited agency grade mark shall verify quality and species (or defined species group). If a defined species group includes both approved and non-approved treatable species, the approved treatable species shall be verified by certificate or other means. Products may also have no grade mark and the species shall be verified by certificate or other means. Proprietary or mill grade stamps that do not include an accredited inspection agency logo are not permitted to bear any reference to AWPA treatment standards. | |